IaaS и наука

Количество собираемых данных в различных областях науки постоянно растет, что позволяет исследователям строить реалистичные модели и проводить точные симуляции на их основе. Однако с каждым годом это требует все больших вычислительных мощностей.

Облачные технологии и IaaS предоставляют пользователям ресурсы, удовлетворяющие требованиям задачи: необходимый объем памяти и хранилища, нужное количество процессоров. Благодаря этому исследовательские группы любых размеров способны решать задачи, не вкладывая огромные средства в компьютерную инфраструктуру.

Все это очень сильно помогает при проведении научных исследований. В качестве примера можно привести университет Сан-Паулу – крупнейший вуз в Бразилии, о котором уже шла речь в одном из наших предыдущих постов. В 2012 году руководством университета было принято решение о реализации проекта «Облако УСП». В ходе работ планировалось из 150 разрозненных университетских дата-центров сформировать 6, а корпоративные, исследовательские и образовательные среды собрать в массивное частное облако.

Когда проект был реализован, УСП приобрел возможность проводить исследования, находясь на огромном расстоянии от изучаемого объекта, а студенты – возможность обучаться онлайн. Более 150 тыс. человек получили доступ к лекциям, почте, цифровой библиотеке, а также к музейным коллекциям.

«Облако позволяет исследователям добиваться результатов гораздо быстрее, что способствует оперативному проникновению информационных технологий в университете, – объясняет Антонио Роке Дечен (Antonio Roque Dechen), исполнительный вице-президент управления и профессор сельскохозяйственного колледжа Луис де Кейруш при университете Сан-Паулу. – Это ускоряет научно-исследовательскую деятельность, обеспечивая безопасный и мобильный доступ к особо важным образовательным инструментам».

Человечество постепенно осознает весь потенциал облачных вычислений, потому стремится применить эту технологию для решения крупных научных и производственных проблем. Поэтому далее в статье мы рассмотрим несколько областей, в которых эффективно используются IaaS-технологии.

Физика

Одной из распространенных проблем при проведении крупномасштабных исследований в физике является управление сводами данных. Для решения этой проблемы подходят облачные вычисления, при помощи которых пользователи получают удаленный доступ к массивам информации и распределенным вычислительным ресурсам. Например, IaaS-облака могут быть эффективно использованы для обработки экспериментальных данных физики высоких энергий.

Группа ученых из Канады разработала распределенную облачную систему, использующую IaaS-кластеры в Канаде и США. Пользователь такой системы может написать пакетные задания для аналитической виртуальной машины и передать их центральному планировщику. Система автоматически подготовит одну из виртуальных машин в облаке и запустит на ней приложение пользователя, которое, в свою очередь, получит свободный доступ к центральной базе данных с калибровочными данными. 

Виртуальная машина имеет установленное программное обеспечение BaBar, моделирующее столкновения заряженных частиц: измеряет траектории их движения и энергию. Тесты показали, что система способна эффективно выполнять сотню пакетных задач одновременно, и её потенциал на этом не ограничен.

 

Астрономия

Астрономия – это наука, смежная с физикой, и в ней также генерируются терабайты данных. Их обработка каждый раз приближает нас к пониманию устройства вселенной. В этой сфере также очень распространено применение облачных вычислений. 

Например, в «облаках» проводится моделирование столкновения галактик с помощью приложения GADGET. Оно специально разработано для проведения симуляций на параллельных вычислительных системах и использует древесные алгоритмы для оценки влияния гравитационных сил на близкорасположенные частицы.

Также стоит отметить миссию космического телескопа «Кеплер», запущенного НАСА в 2009 году. Оснащённый сверхчувствительным фотометром, он был создан с целью поиска планет, подобных Земле, вне Солнечной системы. К началу 2014 года им было открыто 3,5 тыс. кандидатов в планеты, из которых более 1 тыс. оказались подтверждены различными научными группами исследователей.

«Кеплер» с большой точностью измеряет интенсивность поступающего от далеких звезд света и засекает её изменение при прохождении планеты по диску звезды. Анализ таких сигналов требует расчета периодограмм и оценки их значимости, а это невозможно без серьезных вычислительных ресурсов. 

Облачные технологии позволяют распараллелить вычисления, и ускорить обработку данных. Например, выполнение задачи на кластере из 128 машин Dell PowerEdge 1950 позволило повысить производительность алгоритмов в сотни раз.

В качестве еще одного примера стоит привести систему, разработанную канадскими учеными. Они объединили облачную вычислительную систему CANFAR (Canadian Advanced Network for Astronomical Research) с продвинутым программным обеспечением машинного обучения Skytree, тем самым создав первую облачную систему для интеллектуального анализа данных, применяемую в астрономии.

Сейчас доступны более 500 процессорных ядер и несколько сотен терабайт надежного хранилища. Виртуальные машины способны производить крупномасштабные вычисления и оперировать миллионами объектов, однако это далеко не предел системы CANFAR+ Skytree.

 

Робототехника

Аналитическая компания Gartner в 2015 году опубликовала свое исследование «цикла зрелости» развивающихся технологий. На графике технологии распределены в соответствии с тем, насколько велико их принятие большинством.

В новом документе говорится о том, что в настоящий момент на пике завышенных ожиданий находятся беспилотные автомобили и интернет вещей. Однако одним из главных технологических и передовых направлений остается робототехника. 

Весь потенциал роботов до конца не раскрыт, но с этим в скором времени помогут облака. История уходит корнями в начало 1990 годов. С появлением первого браузера Mosaic профессор и студенты из университета Южной Калифорнии начали развивать идею веб-трансляций с камер. 

При этом команда решила отойти от концепции пассивного наблюдения за происходящим и создать робота, который ухаживает за садом с живыми растениями. Для этих целей был адаптирован промышленный манипулятор, снабженный камерой, оросительной системой и соплом для сбора семян. «Роборука» была установлена в центре трехметровой клумбы, а пользователи могли управлять ей с помощью специально разработанного графического интерфейса. «Телесад», такое название получил проект, стал первым активным устройством, работающим по сети. 

С тех пор робототехника продвинулась достаточно далеко. На данный момент имеются сотни исследовательских лабораторий, в которых разработано более 5 млн обслуживающих роботов, убирающихся в домах и офисах, и более 3 тыс. роботов, помогающих хирургам в операционных по всему миру. 

Но пока что невозможно создать робота, который бы расставлял вещи в доме по своим местам. Такая работа для них сложна. Эту проблему затрагивал Эндрю Ын (Andrew Ng) во время своего выступления в Стэнфордском университете.

Проблема кроется в том, что он не способен запомнить все предметы быта – всегда найдется что-то, с чем он не знаком. Новый пульт дистанционного управления от телевизора, новая игрушка ребенка, новые тапочки. 

Однако возможное решение уже существует: нужно подключить электронного помощника к беспроводной сети, так что у него окажется доступ к обширному хранилищу информации в интернете. «Облачный» робот сможет получать данные напрямую из центров обработки данных. Более того, это позволит упростить аппаратную начинку электронного помощника, поскольку все важные алгоритмические операции будут обрабатываться в дата-центре. В этом направлении уже работают несколько исследовательских групп. 

Облачные технологии – это ключ к новому поколению роботов. Возьмите, к примеру, автомобиль Google, который при движении обращается к огромной базе данных компании с картами и снимками из космоса, сопоставляя полученную информацию с данными датчиков и камер видеонаблюдения.

Вплоть до недавнего времени роботы считались автономными системами с ограниченными объемами вычислительной мощности и памяти. Облачная робототехника же предлагает альтернативу, когда роботы обмениваются данными и кодом по беспроводным сетям.